Orthotropic Hoffman Material
References
Parameter Order
All orthotropic models take nine parameters to define the elasticity.
Using a standard notation (11, 22, 33, 12, 23, 13), the nine parameters needed are listed as follows.
Six moduli: E 11 E_{11} E 11 , E 22 E_{22} E 22 , E 33 E_{33} E 33 , G 12 G_{12} G 12 , G 23 G_{23} G 23 , G 13 G_{13} G 13 . Note G i j = G j i G_{ij}=G_{ji} G ij = G ji .
Three Poisson's ratios: u 12 u_{12} u 12 u 23 u_{23} u 23 u 13 u_{13} u 13 . Note u i j ≠ ν j i u_{ij}\neq\nu_{ji} u ij = ν ji .
Theory
The NonlinearHoffman
defines an orthotropic material using Hoffman yield criterion and associative plasticity.
The yield surface is defined as
with σ = [ σ 11 σ 22 σ 33 σ 12 σ 23 σ 13 ] T \sigma=[\sigma_{11}~\sigma_{22}~\sigma_{33}~\sigma_{12}~\sigma_{23}~\sigma_{13}]^\mathrm{T} σ = [ σ 11 σ 22 σ 33 σ 12 σ 23 σ 13 ] T is the stress, C 1 C_1 C 1 to C 9 C_9 C 9 are material constants. K ( ϵ ˉ p ) K(\bar\epsilon_p) K ( ϵ ˉ p ) is the isotropic hardening function.
The constants are defined as follows.
C 1 = 1 2 ( 1 σ 11 t σ 11 c + 1 σ 22 t σ 22 c − 1 σ 33 t σ 33 c ) , C 2 = 1 2 ( 1 σ 22 t σ 22 c + 1 σ 33 t σ 33 c − 1 σ 11 t σ 11 c ) , C 3 = 1 2 ( 1 σ 33 t σ 33 c + 1 σ 11 t σ 11 c − 1 σ 22 t σ 22 c ) , C 4 = 1 σ 12 0 σ 12 0 , C 5 = 1 σ 23 0 σ 23 0 , C 6 = 1 σ 13 0 σ 13 0 , C 7 = σ 11 c − σ 11 t σ 11 t σ 11 c , C 8 = σ 22 c − σ 22 t σ 22 t σ 22 c , C 9 = σ 33 c − σ 33 t σ 33 t σ 33 c . \begin{align*} C_1&=\dfrac{1}{2}(\dfrac{1}{\sigma_{11}^t\sigma_{11}^c}+\dfrac{1}{\sigma_{22}^t\sigma_
{22}^c}-\dfrac{1}{\sigma_{33}^t\sigma_{33}^c}),\\[4mm]
C_2&=\dfrac{1}{2}(\dfrac{1}{\sigma_{22}^t\sigma_{22}^c}+\dfrac{1}{\sigma_{33}^t\sigma_{33}^c}-\dfrac{1}{\sigma_
{11}^t\sigma_{11}^c}),\\[4mm]
C_3&=\dfrac{1}{2}(\dfrac{1}{\sigma_{33}^t\sigma_{33}^c}+\dfrac{1}{\sigma_{11}^t\sigma_{11}^c}-\dfrac{1}{\sigma_
{22}^t\sigma_{22}^c}),\\[4mm]
C_4&=\dfrac{1}{\sigma_{12}^0\sigma_{12}^0},\quad{}C_5=\dfrac{1}{\sigma_{23}^0\sigma_{23}^0},\quad{}C_6=\dfrac{1}{\sigma_
{13}^0\sigma_{13}^0},\\[4mm]
C_7&=\dfrac{\sigma_{11}^c-\sigma_{11}^t}{\sigma_{11}^t\sigma_{11}^c},\quad{}C_8=\dfrac{\sigma_{22}^c-\sigma_
{22}^t}{\sigma_{22}^t\sigma_{22}^c},\quad{}C_9=\dfrac{\sigma_{33}^c-\sigma_{33}^t}{\sigma_{33}^t\sigma_{33}^c}.
\end{align*} C 1 C 2 C 3 C 4 C 7 = 2 1 ( σ 11 t σ 11 c 1 + σ 22 t σ 22 c 1 − σ 33 t σ 33 c 1 ) , = 2 1 ( σ 22 t σ 22 c 1 + σ 33 t σ 33 c 1 − σ 11 t σ 11 c 1 ) , = 2 1 ( σ 33 t σ 33 c 1 + σ 11 t σ 11 c 1 − σ 22 t σ 22 c 1 ) , = σ 12 0 σ 12 0 1 , C 5 = σ 23 0 σ 23 0 1 , C 6 = σ 13 0 σ 13 0 1 , = σ 11 t σ 11 c σ 11 c − σ 11 t , C 8 = σ 22 t σ 22 c σ 22 c − σ 22 t , C 9 = σ 33 t σ 33 c σ 33 c − σ 33 t . The Hoffman function allows different yield stresses for tension and compression. To recover the original Hill yield function, simply set σ i i t = σ i i c \sigma_{ii}^t=\sigma_{ii}^c σ ii t = σ ii c for i = 1 , 2 , 3 i=1,~2,~3 i = 1 , 2 , 3 .
The hardening function K ( ε ˉ p ) K(\bar\varepsilon_p) K ( ε ˉ p ) can be user defined. It shall be noted that K ( 0 ) = 1 K(0)=1 K ( 0 ) = 1 . The following method shall be implemented.
Copy virtual double compute_k(double) const = 0;
virtual double compute_dk(double) const = 0;
History Layout
equivalent plastic strain