GeneralizedAlpha

The generalized-α\alpha method provides second order accuracy with controllable algorithmic damping on high frequency response.

Syntax

Two forms are available.

integrator GeneralisedAlpha (1) [2]
integrator GeneralizedAlpha (1) [2]
# (1) int, unique tag
# [2] double, spectral radius at infinite frequency, default: 0.5

integrator GeneralisedAlpha (1) (2) (3)
integrator GeneralizedAlpha (1) (2) (3)
# (1) int, unique tag
# (2) double, \alpha_f
# (3) double, \alpha_m

Governing Equation

The generalized alpha method assumes that the displacement dd and the velocity vv are integrated as such,

dn+1=dn+Δtvn+Δt2((12β)an+βan+1),d_{n+1}=d_n+\Delta{}tv_n+\Delta{}t^2\left(\left(\dfrac{1}{2}-\beta\right)a_n+\beta{}a_{n+1}\right) ,
vn+1=vn+Δt(1γ)an+Δtγan+1.v_{n+1}=v_n+\Delta{}t\left(1-\gamma\right)a_n+\Delta{}t\gamma{}a_{n+1}.

The equation of motion is expressed at somewhere between tnt_n and tn+1t_{n+1}.

Man+1αm+Cvn+1αf+Kdn+1αf=Fn+1αf,Ma_{n+1-\alpha_m}+Cv_{n+1-\alpha_f}+Kd_{n+1-\alpha_f}=F_{n+1-\alpha_f},

which can also be explicitly shown as

M((1αm)an+1+αman)+C((1αf)vn+1+αfvn)+K((1αf)dn+1+αfdn)=(1αf)Fn+1+αfFn,M\left(\left(1-\alpha_m\right)a_{n+1}+\alpha_ma_n\right)+C\left(\left(1-\alpha_f\right)v_{n+1}+\alpha_fv_n\right) +K\left(\left(1-\alpha_f\right)d_{n+1}+\alpha_fd_n\right)=\left(1-\alpha_f\right)F_{n+1}+\alpha_fF_n,

where αm\alpha_m and αf\alpha_f are two additional parameters.

Default Parameters

To obtain an unconditionally stable algorithm, the following conditions shall be satisfied.

αmαf12,β14+12(αfαm).\alpha_m\le\alpha_f\le\dfrac{1}{2},\quad\beta\ge\dfrac{1}{4}+\dfrac{1}{2}\left(\alpha_f-\alpha_m\right).

Only one parameter is required, the spectral radius hoho_\infty that ranges from zero to one.

The following expressions are used to determine the values of all constants used.

αf=ρρ+1,αm=2ρ1ρ+1,γ=12ρ1ρ+1,β=1(ρ+1)2.\alpha_f=\dfrac{\rho_\infty}{\rho_\infty+1},\quad \alpha_m=\dfrac{2\rho_\infty-1}{\rho_\infty+1},\quad \gamma=\dfrac{1}{2}-\dfrac{\rho_\infty-1}{\rho_\infty+1},\quad \beta=\dfrac{1}{\left(\rho_\infty+1\right)^2}.

So that the resulting algorithm is unconditionally stable and has a second order accuracy. The target numerical damping for high frequencies is achieved while that of low frequencies is minimized.

The recommended values of the spectral radius hoho_\infty range from 0.50.5 to 0.80.8.

Some special parameters can be chosen.

αf\alpha_f

αM\alpha_M

method

0.00.0

0.00.0

Newmark

-

0.00.0

HHT-α\alpha

0.00.0

-

WBZ-α\alpha

Last updated