Nonviscous01

Uniaxial Nonviscous Damping Material

References

The kernel function is defined as a summation of exponential functions.

g(t)=i=1nmiexp(sit)g(t)=\sum_{i=1}^n m_i\exp(-s_it)

The parameters mim_i and sis_i are complex numbers.

Syntax

material Nonviscous01 (1) ((2) (3) (4) (5)...)
# (1) int, unique material tag
# (2) double, real part of `m_i`
# (3) double, imaginary part of `m_i`
# (4) double, real part of `s_i`
# (5) double, imaginary part of `s_i`

Example

material Nonviscous01 2 8. 0 2. 0 4. 0 1. 0

This defines a kernel function of the following form.

g(t)=8exp(2t)+4exp(t)g(t)=8\exp(-2t)+4\exp(-t)

Last updated