BWBN

Bouc-Wen-Baber-Noori Model

The BWBN model is an extension of the BoucWen model with stiffness degradation, strength degradation and pinching effect.

Syntax

material BWBN (1) [2...18]
# (1) int, unique material tag
# [2] double, elastic modulus, default: 2E5
# [3] double, yield stress, default: 4E2
# [4] double, hardening ratio, default: 1E-2
# [5] double, \beta (>0), default: 0.5
# [6] double, exponent n (>0, normally >=1), default: 1.0
# [7] double, initial \nu (>0), default: 1.0
# [8] double, slope of \nu (>0), default: 0.0
# [9] double, initial \eta (>0), default: 1.0
# [10] double, slope of \eta (>0), default: 0.0
# [11] double, initial \phi (>0), default: 1.0
# [12] double, slope of \phi (>0), default: 0.0
# [13] double, \zeta (1>\zeta>0), default: 0.0
# [14] double, slope of A (>0), default: 0.0
# [15] double, p (>0), default: 0.0
# [16] double, q (>0), default: 0.0
# [17] double, \lambda (>0), default: 1.0
# [18] double, density, default: 0.0

History Variable Layout

location
value

initial_history(0)

z

Theory

The Wikipedia page contains sufficient information about the formulation of BWBN model. Some normalizations are carried out compared to the original model.

The evolution of internal displacement z(t)z(t) is governed by the differential equation,

ηΔz=hΔuuy(Aν(γ+sign(zΔu)β)zn).\eta\Delta{}z=h\dfrac{\Delta{}u}{u_y}\left(A-\nu\left(\gamma+\text{sign}\left(z\cdot\Delta{}u\right)\beta\right) \Big|z\Big|^n\right).

Then,

F=aFyuuy+(1a)Fyz.F=aF_y\dfrac{u}{u_y}+\left(1-a\right)F_yz.

For state determination, zz is solved iteratively by using the Newton method. The evolutions of internal functions rely on the dissipated energy ee, which is defined to be a normalized quantity.

e=(1a)z du.e=\left(1-a\right)\int{}z~\mathrm{d}u.

The trapezoidal rule is used so that

Δe=(1a)2z+Δz2Δu.\Delta{}e=\left(1-a\right)\dfrac{2z+\Delta{}z}{2}\Delta{}u.

The evolutions are

ν=ν0+δνe,η=η0+δηe,A=1δAe,h=1ζ1exp((zsign(Δu)qzuζ2)2),ζ1=ζ(1exp(pe)),ζ2=(ϕ0+δϕe)(λ+ζ1),zu=1νn=ν1/n.\begin{align*} \nu&=\nu_0+\delta_\nu{}e,\\[3mm] \eta&=\eta_0+\delta_\eta{}e,\\[3mm] A&=1-\delta_Ae,\\[3mm] h&=1-\zeta_1\exp\left(-\left(\dfrac{z\cdot\text{sign}\left(\Delta{}u\right)-qz_u}{\zeta_2}\right)^2\right),\\[3mm] \zeta_1&=\zeta\left(1-\exp\left(-pe\right)\right),\\[3mm] \zeta_2&=\left(\phi_0+\delta_\phi{}e\right)\left(\lambda+\zeta_1\right),\\[3mm] z_u&=\sqrt[n]{\dfrac{1}{\nu}}=\nu^{-1/n}. \end{align*}

Parameters

Strength degradation is controlled by uu. To disable it, set δν=0\delta_\nu=0.

Stiffness degradation is controlled by η\eta. To disable it, set δη=0\delta_\eta=0.

Pinching is controlled by hh. To disable it, set ζ=0\zeta=0 or p=0p=0.

Examples

Vanilla Model

The default behavior is similar to a bilinear hardening material.

vanilla model

Strength degradation

A positive δν\delta_\nu enables strength degradation.

strength degradation

A positive δA\delta_A has the similar effect.

strength degradation

Stiffness degradation

A positive δη\delta_\eta enables stiffness degradation.

stiffness degradation

Pinching Effect

The pinching effect is governed by ϕ0\phi_0, δϕ\delta_\phi, ζ\zeta, pp, qq and λ\lambda.

pinching effect

Last updated