suanPan-manual
  • Introduction
  • Basic
    • Obtain Application
    • Configure Application
    • Perform Analysis
    • Model Syntax
    • Model Structure
    • Tweak Performance
    • Compile Application
    • Build Documentation
    • Architecture Design
    • On Clusters
  • Example
    • Developer
      • element template
      • material template
    • Solid
      • wave propagation
    • Geotechnical
      • triaxial compression of sand
      • slope analysis
    • Structural
      • Statics
        • bending of a cantilever beam
        • bifurcation of a cantilever beam
        • double-edge notched specimen
        • lees frame
        • notched beam under cyclic loading
        • rc section analysis
        • truss roof
        • uniform tension of a rubber specimen
        • thin-walled section analysis for frame structures
        • calibration of subloading surface model
      • Dynamics
        • bouncing of a ball
        • mass-spring-dashpot system
        • dynamic analysis of a portal frame
        • elemental damping
        • particle collision
        • response history analysis of an elastic coupled wall
        • multi-support excitation
        • triple pendulum
        • computing response spectrum
        • integrate with python
        • process ground motion
      • Hybrid
        • vibration of a displaced beam
      • Buckling
        • buckling analysis of a cantilever beam
      • Contact
        • contact between beam and block
        • contact in 3d space
      • Optimization
        • evolutionary structural optimization
      • Isogeometric Analysis
        • linear analysis of a single element
    • Miscellaneous
      • batch execution for automation
  • Command Collection
    • Define
      • amplitude
      • bc
      • domain
      • element
      • expression
      • file
      • generate
      • group
      • import
      • initial
      • load
      • material
      • modifier
      • node
      • recorder
      • section
    • Configure
      • analyze
      • converger
      • criterion
      • integrator
      • precheck
      • step
    • Process
      • benchmark
      • clear
      • command
      • enable
      • exit
      • materialtest
      • materialtestbyload
      • sectiontest
      • peek
      • plot
      • protect
      • pwd
      • reset
      • save
      • set
      • upsampling
      • sdof_response
      • response_spectrum
  • Amplitude
    • Amplitude
    • Special
      • NZStrongMotion
    • Universal
      • Combine
      • Constant
      • Decay
      • Linear
      • Modulated
      • Tabular
      • TabularSpline
      • Trig
  • Constraint
    • MPC
    • ParticleCollision
    • RigidWall
    • RestitutionWall
    • FixedLength
    • MaxForce
    • NodeLine
    • NodeFacet
    • Embed2D
    • Embed3D
    • LJPotential2D
    • MaximumGap2D
    • MinimumGap2D
    • MaximumGap3D
    • MinimumGap3D
  • Converger
    • Converger
    • Absolute
      • AbsDisp
      • AbsError
      • AbsIncreDisp
      • AbsIncreAcc
      • AbsIncreEnergy
      • AbsResidual
    • Other
      • FixedNumber
      • Logic
    • Relative
      • RelDisp
      • RelError
      • RelIncreDisp
      • RelIncreAcc
      • RelIncreEnergy
      • RelResidual
  • Criterion
    • Criterion
    • MaxDisplacement
    • MaxHistory
    • MaxResistance
    • MinDisplacement
    • MinResistance
    • StrainEnergyEvolution
  • Element
    • Beam
      • B21
      • B21E
      • B21H
      • B31
      • B31OS
      • EB21
      • EB31OS
      • F21
      • F21H
      • F31
      • NMB21
      • NMB21E
      • NMB31
      • MVLEM
      • Orientation
    • Cube
      • C3D20
      • C3D4
      • C3D8
      • C3D8I
      • CIN3D8
      • DC3D4
      • DC3D8
    • Membrane
      • Couple Stress
      • Phase Field
        • DCP3
        • DCP4
      • Axisymmetric
        • CAX3
        • CAX4
        • CAX8
      • Plane
        • CP3
        • CP4
        • CP4I
        • CP5
        • CP6
        • CP7
        • CP8
      • Mixed
        • PS
        • QE2
      • Drilling
        • Allman
        • GCMQ
        • GQ12
      • Infinite
        • CINP4
      • Geotechnical
        • PCPE4DC
        • PCPE4UC
        • PCPE8DC
        • PCPE8UC
      • Membrane
    • Modifier
      • Modifier
      • ElementalLee
      • ElementalNonviscous
      • LinearViscosity
    • Patch
      • Patch
      • PatchCube
      • PatchQuad
    • Plate
      • DKT3
      • DKT4
      • Mindlin
    • Shell
      • DKTS3
      • DKTS4
      • S4
      • SGCMS
      • ShellBase
    • Special
      • Contact2D
      • Contact3D
      • Damper01
      • Damper02
      • Embedded2D
      • Embedded3D
      • Joint
      • Mass
      • SingleSection
      • Spring01
      • Spring02
      • Tie
      • TranslationConnector
    • Truss
      • T2D2
      • T2D2S
      • T3D2
      • T3D2S
  • Group
    • CustomNodeGroup
    • NodeGroup
    • ElementGroup
    • GroupGroup
  • Integrator
    • Implicit
      • Linear
      • BatheTwoStep
      • GeneralizedAlpha
      • OALTS
      • GSSSS
      • Newmark
        • LeeNewmark
        • LeeElementalNewmark
        • LeeNewmarkFull
        • LeeNewmarkIterative
        • Newmark
        • RayleighNewmark
        • WilsonPenzienNewmark
        • NonviscousNewmark
    • Explicit
      • Tchamwa
      • BatheExplicit
      • GeneralizedAlphaExplicit
  • Material
    • Guide
      • Metal
      • Customisation
    • Material1D
      • Concrete
        • ConcreteCM
        • ConcreteExp
        • ConcreteTsai
        • ConcreteTable
        • ConcreteK4
      • Degradation
        • Degradation
        • CustomStrainDegradation
        • CustomStressDegradation
        • Dhakal
        • TrilinearStrainDegradation
      • Elastic
        • BilinearElastic1D
        • Elastic1D
        • AsymmElastic1D
        • MultilinearElastic1D
        • PolyElastic1D
        • NLE1D01
        • Sinh1D
        • Tanh1D
        • CustomElastic1D
      • Hysteresis
        • AFC
        • AFCN
        • BilinearOO
        • BilinearPO
        • BoucWen
        • BWBN
        • Flag
        • MPF
        • MultilinearOO
        • MultilinearPO
        • RambergOsgood
        • SimpleHysteresis
        • SlipLock
        • SteelBRB
        • Trivial
        • Gap01
      • Viscosity
        • Kelvin
        • Maxwell
        • NonlinearViscosity
        • BilinearViscosity
        • CustomViscosity
        • Viscosity01
        • Viscosity02
        • CoulombFriction
        • Nonviscous01
      • vonMises
        • Subloading1D
        • ArmstrongFrederick1D
        • AFCO1D
        • Bilinear1D
        • BilinearMises1D
        • CustomGurson1D
        • CustomMises1D
        • ExpGurson1D
        • ExpMises1D
        • Mises1D
        • Multilinear1D
        • NonlinearGurson1D
        • VAFCRP1D
    • Material2D
      • AxisymmetricElastic
      • Concrete21
      • Concrete22
      • DuncanSelig
      • Elastic2D
      • Rebar2D
    • Material3D
      • CamClay
        • BilinearCC
        • ExpCC
        • NonlinearCamClay
        • ParabolicCC
      • Concrete
        • CDP
        • CDPM2
        • Rebar3D
        • TableCDP
        • CustomCDP
      • Damage
        • IsotropicDamage
        • LinearDamage
      • DruckerPrager
        • BilinearDP
        • ExpDP
        • CustomDP
        • NonlinearDruckerPrager
      • Elastic
        • BlatzKo
        • IsotropicElastic3D
        • IsotropicNonlinearElastic3D
        • MooneyRivlin
        • NLE3D01
        • OrthotropicElastic3D
        • Yeoh
      • Hoffman
        • BilinearHoffman
        • ExpHoffman
        • CustomHoffman
        • NonlinearHill
        • NonlinearHoffman
        • TimberPD
      • Sand
        • SimpleSand
        • DafalisaManzari
      • vonMises
        • ArmstrongFrederick
        • BilinearJ2
        • BilinearPeric
        • CustomGurson
        • TableGurson
        • CustomJ2
        • ExpGurson
        • ExpJ2
        • MultilinearJ2
        • NonlinearGurson
        • NonlinearJ2
        • NonlinearPeric
        • PolyJ2
        • VAFCRP
        • Subloading
    • MaterialOS
      • ElasticOS
    • Wrapper
      • Axisymmetric
      • Laminated
      • Parallel
      • PlaneStrain
      • PlaneSymmetric
      • PlaneStress
      • Rotation2D
      • Rotation3D
      • Sequential
      • Stacked
      • Uniaxial
      • OS146
      • OS146S
      • Substepping
  • Recorder
    • Recorder
    • OutputType
  • Section
    • Code
      • EU
      • NZ
      • US
    • Section1D
      • Circle1D
      • Fibre1D
      • Rectangle1D
      • TrussSection
    • Section2D
      • Bar2D
      • Box2D
      • Circle2D
      • CircularHollow2D
      • Fibre2D
      • HSection2D
      • ISection2D
      • Rectangle2D
      • TSection2D
    • Section3D
      • Bar3D
      • Box3D
      • Circle3D
      • CircularHollow3D
      • Fibre3D
      • ISection3D
      • Rectangle3D
      • TSection3D
    • SectionOS
      • Cell3DOS
      • Fibre3DOS
    • SectionNM
      • SectionNM
      • NM2D1
      • NM2D2
      • NM2D3
      • NM2D3K
      • NM3D1
      • NM3D2
      • NM3D3
      • NM3D3K
  • Solver
    • BFGS
    • MPDC
    • Newton
    • AICN
    • Ramm
  • Step
    • Overview
    • ArcLength
    • Buckle
    • Dynamic
    • Frequency
    • Optimization
    • Static
  • Developer
    • Prerequisites
    • C Style Interface
      • material
    • CPP Style Interface
      • material
      • element
      • constraint
Powered by GitBook
On this page
  • Syntax
  • Theory
  • Implementation
Edit on GitHub
  1. Integrator
  2. Implicit
  3. Newmark

WilsonPenzienNewmark

The WilsonPenzienNewmark incorporates the Wilson-Penzien damping model.

For the moment, MPC cannot be considered in all global damping models.

Syntax

integrator WilsonPenzienNewmark (1) (2) (3) [4...]
# (1) int, unique integrator tag
# (2) double, alpha (beta in some references) in Newmark method, normally 0.25
# (3) double, beta (gamma in some references) in Newmark method, normally 0.5
# [4...] double, damping ratios on the first n modes

Theory

The Wilson-Penzien damping model is defined by using global mode shapes. For the generalized eigenvalue problem, the natural frequencies ω\omegaω and mode shapes ϕ\mathbf{\phi}ϕ are defined to be

Kϕ=ω2Mϕ.\mathbf{K\phi}=\omega^2\mathbf{M\phi}.Kϕ=ω2Mϕ.

The damping matrix is defined to be

C=θDθT,\mathbf{C}=\mathbf{\theta{}D}\mathbf{\theta}^\mathrm{T},C=θDθT,

where D\mathbf{D}D is the diagonal matrix with diagonal entries to be 2ξnωnMn\dfrac{2\xi_n\omega_n}{M_n}Mn​2ξn​ωn​​, and θ=Mϕ\mathbf{\theta}=\mathbf{M\phi}θ=Mϕ.

However, the damping matrix is not explicitly formed, since C\mathbf{C}C is fully populated while K\mathbf{K}K and M\mathbf{M}M may be stored in a banded or even sparse scheme.

Implementation

In order to implement the algorithm, the Woodbury identity is utilized. The global solving equation is

KeΔU=R,\mathbf{K}_e\mathbf{\Delta{}U}=\mathbf{R},Ke​ΔU=R,

with Ke=K+c0M+c1C\mathbf{K}_e=\mathbf{K}+c_0\mathbf{M}+c_1\mathbf{C}Ke​=K+c0​M+c1​C to be the effective stiffness matrix. By denoting K+c0M+c1Cv\mathbf{K}+c_0\mathbf{M}+c_1\mathbf{C}_vK+c0​M+c1​Cv​ to be Kˉ\mathbf{\bar{K}}Kˉ, then

KeΔU=(Kˉ+c1C)ΔU=R,\mathbf{K}_e\mathbf{\Delta{}U}=(\mathbf{\bar{K}}+c_1\mathbf{C})\mathbf{\Delta{}U}=\mathbf{R},Ke​ΔU=(Kˉ+c1​C)ΔU=R,
ΔU=(Kˉ+θDˉθT)−1R,\mathbf{\Delta{}U}=(\mathbf{\bar{K}}+\mathbf{\theta{}}\mathbf{\bar{D}}\mathbf{\theta}^\mathrm{T})^{-1}\mathbf{R},ΔU=(Kˉ+θDˉθT)−1R,

where Dˉ=c1D\mathbf{\bar{D}}=c_1\mathbf{D}Dˉ=c1​D. Note c0c_0c0​ and c1c_1c1​ are the corresponding parameters used in Newmark algorithm. Note Cv\mathbf{C}_vCv​ is used to denote the additional viscous damping effect due to viscous devices such as dampers. This part does not contribute the formulation of global damping matrix.

By using the Woodbury identity, one could obtain

ΔU=(Kˉ+θDˉθT)−1R,\mathbf{\Delta{}U}=(\mathbf{\bar{K}}+\mathbf{\theta{}}\mathbf{\bar{D}}\mathbf{\theta}^\mathrm{T}) ^{-1}\mathbf{R},ΔU=(Kˉ+θDˉθT)−1R,
ΔU=(Kˉ−1−Kˉ−1θ(Dˉ−1+θTKˉ−1θ)−1θTKˉ−1)R.\mathbf{\Delta{}U}=(\mathbf{\bar{K}}^{-1}-\mathbf{\bar{K}}^{-1}\mathbf{\theta{}}( \mathbf{\bar{D}}^{-1}+\mathbf{\theta}^\mathrm{T}\mathbf{\bar{K}}^{-1}\mathbf{\theta}) ^{-1}\mathbf{\theta}^\mathrm{T}\mathbf{\bar{K}}^{-1})\mathbf{R}.ΔU=(Kˉ−1−Kˉ−1θ(Dˉ−1+θTKˉ−1θ)−1θTKˉ−1)R.

Note Dˉ−1\mathbf{\bar{D}}^{-1}Dˉ−1 can be conveniently formulated as it is simply a diagonal matrix.

The above formula requires two additional function calls to matrix solver. If the factorization can be stored, this reduces to two backward substitutions.

PreviousRayleighNewmarkNextNonviscousNewmark

Last updated 3 years ago