WilsonPenzienNewmark

The WilsonPenzienNewmark incorporates the Wilson-Penzien damping model.

For the moment, MPC cannot be considered in all global damping models.

Syntax

integrator WilsonPenzienNewmark (1) (2) (3) [4...]
# (1) int, unique integrator tag
# (2) double, alpha (beta in some references) in Newmark method, normally 0.25
# (3) double, beta (gamma in some references) in Newmark method, normally 0.5
# [4...] double, damping ratios on the first n modes

Theory

The Wilson-Penzien damping model is defined by using global mode shapes. For the generalized eigenvalue problem, the natural frequencies ω\omega and mode shapes ϕ\mathbf{\phi} are defined to be

Kϕ=ω2Mϕ.\mathbf{K\phi}=\omega^2\mathbf{M\phi}.

The damping matrix is defined to be

C=θDθT,\mathbf{C}=\mathbf{\theta{}D}\mathbf{\theta}^\mathrm{T},

where D\mathbf{D} is the diagonal matrix with diagonal entries to be 2ξnωnMn\dfrac{2\xi_n\omega_n}{M_n}, and θ=Mϕ\mathbf{\theta}=\mathbf{M\phi}.

However, the damping matrix is not explicitly formed, since C\mathbf{C} is fully populated while K\mathbf{K} and M\mathbf{M} may be stored in a banded or even sparse scheme.

Implementation

In order to implement the algorithm, the Woodbury identity is utilized. The global solving equation is

KeΔU=R,\mathbf{K}_e\mathbf{\Delta{}U}=\mathbf{R},

with Ke=K+c0M+c1C\mathbf{K}_e=\mathbf{K}+c_0\mathbf{M}+c_1\mathbf{C} to be the effective stiffness matrix. By denoting K+c0M+c1Cv\mathbf{K}+c_0\mathbf{M}+c_1\mathbf{C}_v to be Kˉ\mathbf{\bar{K}}, then

KeΔU=(Kˉ+c1C)ΔU=R,\mathbf{K}_e\mathbf{\Delta{}U}=(\mathbf{\bar{K}}+c_1\mathbf{C})\mathbf{\Delta{}U}=\mathbf{R},
ΔU=(Kˉ+θDˉθT)1R,\mathbf{\Delta{}U}=(\mathbf{\bar{K}}+\mathbf{\theta{}}\mathbf{\bar{D}}\mathbf{\theta}^\mathrm{T})^{-1}\mathbf{R},

where Dˉ=c1D\mathbf{\bar{D}}=c_1\mathbf{D}. Note c0c_0 and c1c_1 are the corresponding parameters used in Newmark algorithm. Note Cv\mathbf{C}_v is used to denote the additional viscous damping effect due to viscous devices such as dampers. This part does not contribute the formulation of global damping matrix.

By using the Woodbury identity, one could obtain

ΔU=(Kˉ+θDˉθT)1R,\mathbf{\Delta{}U}=(\mathbf{\bar{K}}+\mathbf{\theta{}}\mathbf{\bar{D}}\mathbf{\theta}^\mathrm{T}) ^{-1}\mathbf{R},
ΔU=(Kˉ1Kˉ1θ(Dˉ1+θTKˉ1θ)1θTKˉ1)R.\mathbf{\Delta{}U}=(\mathbf{\bar{K}}^{-1}-\mathbf{\bar{K}}^{-1}\mathbf{\theta{}}( \mathbf{\bar{D}}^{-1}+\mathbf{\theta}^\mathrm{T}\mathbf{\bar{K}}^{-1}\mathbf{\theta}) ^{-1}\mathbf{\theta}^\mathrm{T}\mathbf{\bar{K}}^{-1})\mathbf{R}.

Note Dˉ1\mathbf{\bar{D}}^{-1} can be conveniently formulated as it is simply a diagonal matrix.

The above formula requires two additional function calls to matrix solver. If the factorization can be stored, this reduces to two backward substitutions.

Last updated