NonlinearGurson

Nonlinear General Gurson Porous Model

Yield Function

An extended yield function is used,

F=q2+2q1fσy2cosh(32q2pσy)σy2(q12f2+1),F=q^2+2q_1f\sigma_y^2\cosh\left(\dfrac{3}{2}\dfrac{q_2p}{\sigma_y}\right)-\sigma_y^2\left(q_1^2f^2+1\right),

where

s=dev σ,p=tr σ3=I13,q=3J2=32s:s=32s.s=\mathrm{dev}~\sigma,\qquad{}p=\dfrac{\mathrm{tr}~ \sigma}{3}=\dfrac{I_1}{3},\qquad{}q=\sqrt{3J_2}=\sqrt{\dfrac{3}{2}s:s}=\sqrt{\dfrac{3}{2}}|s|.

Furthermore, q1q_1, q2q_2 and q3=q12q_3=q_1^2 are model constants, f(εmp)f(\varepsilon_m^p) is the volume fraction, σy(εmp)\sigma_y(\varepsilon_m^p) is the yield stress, εmp\varepsilon_m^p is the equivalent plastic strain.

  • q1=q2=1q_1=q_2=1 The original Gurson model is recovered.

  • q1=0q_1=0 The von Mises model is recovered.

Evolution of Equivalent Plastic Strain

The evolution of εmp\varepsilon_m^p is assumed to be governed by the equivalent plastic work expression,

(1f)σyΔεmp=σ:Δεp=2Δγ(qtr1+6GΔγ)2+3q1q2pΔγfσysinh(32q2pσy).\left(1-f\right)\sigma_y\Delta\varepsilon^p_m=\sigma:\Delta\varepsilon^p=2\Delta\gamma\left( \dfrac{q^{tr}}{1+6G\Delta\gamma}\right)^2+3q_1q_2p\Delta\gamma{}f\sigma_y\sinh\left( \dfrac{3}{2}\dfrac{q_2p}{\sigma_y}\right).

Evolution of Volume Fraction

The evolution of volume fraction consists of two parts.

Δf=Δfg+Δfn,\Delta{}f=\Delta{}f_g+\Delta{}f_n,

where

Δfg=(1f)Δεv,Δfn=AΔεmp\Delta{}f_g=(1-f)\Delta\varepsilon_v,\qquad\Delta{}f_n=A\Delta\varepsilon_m^p

with

A=fNsN2πexp(12(εmpεNsN)2).A=\dfrac{f_N}{s_N\sqrt{2\pi}}\exp\left(-\dfrac{1}{2}\left(\dfrac{\varepsilon_m^p-\varepsilon_N}{s_N}\right)^2\right).

Parameters fNf_N, sNs_N and εN\varepsilon_N controls the normal distribution of volume fraction. If fN=0f_N=0, the nucleation is disabled. In this case, when f0=0f_0=0, the volume fraction will stay at zero regardless of strain history.

Recording

This model supports the following additional history variables to be recorded.

variable label
physical meaning

VF

volume fraction

Last updated