suanPan-manual
  • Introduction
  • Basic
    • Obtain Application
    • Configure Application
    • Perform Analysis
    • Model Syntax
    • Model Structure
    • Tweak Performance
    • Compile Application
    • Build Documentation
    • Architecture Design
    • On Clusters
  • Example
    • Developer
      • element template
      • material template
    • Solid
      • wave propagation
    • Geotechnical
      • triaxial compression of sand
      • slope analysis
    • Structural
      • Statics
        • bending of a cantilever beam
        • bifurcation of a cantilever beam
        • double-edge notched specimen
        • lees frame
        • notched beam under cyclic loading
        • rc section analysis
        • truss roof
        • uniform tension of a rubber specimen
        • thin-walled section analysis for frame structures
        • calibration of subloading surface model
      • Dynamics
        • bouncing of a ball
        • mass-spring-dashpot system
        • dynamic analysis of a portal frame
        • elemental damping
        • particle collision
        • response history analysis of an elastic coupled wall
        • multi-support excitation
        • triple pendulum
        • computing response spectrum
        • integrate with python
        • process ground motion
      • Hybrid
        • vibration of a displaced beam
      • Buckling
        • buckling analysis of a cantilever beam
      • Contact
        • contact between beam and block
        • contact in 3d space
      • Optimization
        • evolutionary structural optimization
      • Isogeometric Analysis
        • linear analysis of a single element
    • Miscellaneous
      • batch execution for automation
  • Command Collection
    • Define
      • amplitude
      • bc
      • domain
      • element
      • expression
      • file
      • generate
      • group
      • import
      • initial
      • load
      • material
      • modifier
      • node
      • recorder
      • section
    • Configure
      • analyze
      • converger
      • criterion
      • integrator
      • precheck
      • step
    • Process
      • benchmark
      • clear
      • command
      • enable
      • exit
      • materialtest
      • materialtestbyload
      • sectiontest
      • peek
      • plot
      • protect
      • pwd
      • reset
      • save
      • set
      • upsampling
      • sdof_response
      • response_spectrum
  • Amplitude
    • Amplitude
    • Special
      • NZStrongMotion
    • Universal
      • Combine
      • Constant
      • Decay
      • Linear
      • Modulated
      • Tabular
      • TabularSpline
      • Trig
  • Constraint
    • MPC
    • ParticleCollision
    • RigidWall
    • RestitutionWall
    • FixedLength
    • MaxForce
    • NodeLine
    • NodeFacet
    • Embed2D
    • Embed3D
    • LJPotential2D
    • MaximumGap2D
    • MinimumGap2D
    • MaximumGap3D
    • MinimumGap3D
  • Converger
    • Converger
    • Absolute
      • AbsDisp
      • AbsError
      • AbsIncreDisp
      • AbsIncreAcc
      • AbsIncreEnergy
      • AbsResidual
    • Other
      • FixedNumber
      • Logic
    • Relative
      • RelDisp
      • RelError
      • RelIncreDisp
      • RelIncreAcc
      • RelIncreEnergy
      • RelResidual
  • Criterion
    • Criterion
    • MaxDisplacement
    • MaxHistory
    • MaxResistance
    • MinDisplacement
    • MinResistance
    • StrainEnergyEvolution
  • Element
    • Beam
      • B21
      • B21E
      • B21H
      • B31
      • B31OS
      • EB21
      • EB31OS
      • F21
      • F21H
      • F31
      • NMB21
      • NMB21E
      • NMB31
      • MVLEM
      • Orientation
    • Cube
      • C3D20
      • C3D4
      • C3D8
      • C3D8I
      • CIN3D8
      • DC3D4
      • DC3D8
    • Membrane
      • Couple Stress
      • Phase Field
        • DCP3
        • DCP4
      • Axisymmetric
        • CAX3
        • CAX4
        • CAX8
      • Plane
        • CP3
        • CP4
        • CP4I
        • CP5
        • CP6
        • CP7
        • CP8
      • Mixed
        • PS
        • QE2
      • Drilling
        • Allman
        • GCMQ
        • GQ12
      • Infinite
        • CINP4
      • Geotechnical
        • PCPE4DC
        • PCPE4UC
        • PCPE8DC
        • PCPE8UC
      • Membrane
    • Modifier
      • Modifier
      • ElementalLee
      • ElementalNonviscous
      • LinearViscosity
    • Patch
      • Patch
      • PatchCube
      • PatchQuad
    • Plate
      • DKT3
      • DKT4
      • Mindlin
    • Shell
      • DKTS3
      • DKTS4
      • S4
      • SGCMS
      • ShellBase
    • Special
      • Contact2D
      • Contact3D
      • Damper01
      • Damper02
      • Embedded2D
      • Embedded3D
      • Joint
      • Mass
      • SingleSection
      • Spring01
      • Spring02
      • Tie
      • TranslationConnector
    • Truss
      • T2D2
      • T2D2S
      • T3D2
      • T3D2S
  • Group
    • CustomNodeGroup
    • NodeGroup
    • ElementGroup
    • GroupGroup
  • Integrator
    • Implicit
      • Linear
      • BatheTwoStep
      • GeneralizedAlpha
      • OALTS
      • GSSSS
      • Newmark
        • LeeNewmark
        • LeeElementalNewmark
        • LeeNewmarkFull
        • LeeNewmarkIterative
        • Newmark
        • RayleighNewmark
        • WilsonPenzienNewmark
        • NonviscousNewmark
    • Explicit
      • Tchamwa
      • BatheExplicit
      • GeneralizedAlphaExplicit
  • Material
    • Guide
      • Metal
      • Customisation
    • Material1D
      • Concrete
        • ConcreteCM
        • ConcreteExp
        • ConcreteTsai
        • ConcreteTable
        • ConcreteK4
      • Degradation
        • Degradation
        • CustomStrainDegradation
        • CustomStressDegradation
        • Dhakal
        • TrilinearStrainDegradation
      • Elastic
        • BilinearElastic1D
        • Elastic1D
        • AsymmElastic1D
        • MultilinearElastic1D
        • PolyElastic1D
        • NLE1D01
        • Sinh1D
        • Tanh1D
        • CustomElastic1D
      • Hysteresis
        • AFC
        • AFCN
        • BilinearOO
        • BilinearPO
        • BoucWen
        • BWBN
        • Flag
        • MPF
        • MultilinearOO
        • MultilinearPO
        • RambergOsgood
        • SimpleHysteresis
        • SlipLock
        • SteelBRB
        • Trivial
        • Gap01
      • Viscosity
        • Kelvin
        • Maxwell
        • NonlinearViscosity
        • BilinearViscosity
        • CustomViscosity
        • Viscosity01
        • Viscosity02
        • CoulombFriction
        • Nonviscous01
      • vonMises
        • Subloading1D
        • ArmstrongFrederick1D
        • AFCO1D
        • Bilinear1D
        • BilinearMises1D
        • CustomGurson1D
        • CustomMises1D
        • ExpGurson1D
        • ExpMises1D
        • Mises1D
        • Multilinear1D
        • NonlinearGurson1D
        • VAFCRP1D
    • Material2D
      • AxisymmetricElastic
      • Concrete21
      • Concrete22
      • DuncanSelig
      • Elastic2D
      • Rebar2D
    • Material3D
      • CamClay
        • BilinearCC
        • ExpCC
        • NonlinearCamClay
        • ParabolicCC
      • Concrete
        • CDP
        • CDPM2
        • Rebar3D
        • TableCDP
        • CustomCDP
      • Damage
        • IsotropicDamage
        • LinearDamage
      • DruckerPrager
        • BilinearDP
        • ExpDP
        • CustomDP
        • NonlinearDruckerPrager
      • Elastic
        • BlatzKo
        • IsotropicElastic3D
        • IsotropicNonlinearElastic3D
        • MooneyRivlin
        • NLE3D01
        • OrthotropicElastic3D
        • Yeoh
      • Hoffman
        • BilinearHoffman
        • ExpHoffman
        • CustomHoffman
        • NonlinearHill
        • NonlinearHoffman
        • TimberPD
      • Sand
        • SimpleSand
        • DafalisaManzari
      • vonMises
        • ArmstrongFrederick
        • BilinearJ2
        • BilinearPeric
        • CustomGurson
        • TableGurson
        • CustomJ2
        • ExpGurson
        • ExpJ2
        • MultilinearJ2
        • NonlinearGurson
        • NonlinearJ2
        • NonlinearPeric
        • PolyJ2
        • VAFCRP
        • Subloading
    • MaterialOS
      • ElasticOS
    • Wrapper
      • Axisymmetric
      • Laminated
      • Parallel
      • PlaneStrain
      • PlaneSymmetric
      • PlaneStress
      • Rotation2D
      • Rotation3D
      • Sequential
      • Stacked
      • Uniaxial
      • OS146
      • OS146S
      • Substepping
  • Recorder
    • Recorder
    • OutputType
  • Section
    • Code
      • EU
      • NZ
      • US
    • Section1D
      • Circle1D
      • Fibre1D
      • Rectangle1D
      • TrussSection
    • Section2D
      • Bar2D
      • Box2D
      • Circle2D
      • CircularHollow2D
      • Fibre2D
      • HSection2D
      • ISection2D
      • Rectangle2D
      • TSection2D
    • Section3D
      • Bar3D
      • Box3D
      • Circle3D
      • CircularHollow3D
      • Fibre3D
      • ISection3D
      • Rectangle3D
      • TSection3D
    • SectionOS
      • Cell3DOS
      • Fibre3DOS
    • SectionNM
      • SectionNM
      • NM2D1
      • NM2D2
      • NM2D3
      • NM2D3K
      • NM3D1
      • NM3D2
      • NM3D3
      • NM3D3K
  • Solver
    • BFGS
    • MPDC
    • Newton
    • AICN
    • Ramm
  • Step
    • Overview
    • ArcLength
    • Buckle
    • Dynamic
    • Frequency
    • Optimization
    • Static
  • Developer
    • Prerequisites
    • C Style Interface
      • material
    • CPP Style Interface
      • material
      • element
      • constraint
Powered by GitBook
On this page
  • Syntax
  • Theory
  • Hyperelasticity
  • Critical State
  • Yield Function
  • Flow Rule
  • Hardening Rule
  • Fabric Effect
Edit on GitHub
  1. Material
  2. Material3D
  3. Sand

DafalisaManzari

PreviousSimpleSandNextvonMises

Last updated 1 year ago

The modified Dafalias--Manzari sand model.

The original model is modified slightly. Readers can also refer to the corresponding section in for details on the theory.

The modifications can be summaries as follows.

  1. The continuum mechanics convention (tension positive) is used. All volumetric strain and hydrostatic stress related quantities shall flip their signs.

  2. The Lode angle dependency is removed, which is equivalent to set c=1c=1c=1 in Eq. (19).

  3. Constants such as 2/32/32/3 and 2/3\sqrt{2/3}2/3​ are removed. They can be combined with the model parameters.

  4. The hardening related parameter hhh as defined in Eq. (24) causes numerical issues under small cyclic loads. Hence, it is changed to a similar form.

The algorithm is correct but the theory needs validation. Your collaboration would be much appreciated.

Syntax

material DafaliasMazanri (1) (2-18) [19]
# (1) int, unique material tag
# (2) double, reference shear modulus G_0 ==> 125
# (3) double, poissons ratio \nu
# (4) double, \alpha^c ==> 1.5
# (5) double, slope of critical state line \lambda_c ==> 0.02
# (6) double, initial void ratio e_0
# (7) double, exponent \xi ==> 0.7
# (8) double, initial yield surface size m ==> 0.01
# (9) double, hardening constant h_0
# (10) double, hardening constant h_1 ==> 0.1
# (11) double, hardening constant c_h ==> 0.9
# (12) double, n^b ==> 1.1
# (13) double, dilatancy constant A_0 ==> -0.7
# (14) double, n^d ==> 3.5
# (15) double, z_{max} ==> 4
# (16) double, c_z ==> 600
# (17) double, atmospheric pressure p_{at} ==> -130
# (18) double, threshold G_r ==> 0.1
# [19] double, density, default: 0.0

Theory

Hyperelasticity

The hyperelastic response is defined as

G=G0(2.97−e)21+eppat,K=231+ν1−2νG.G=G_0\dfrac{\left(2.97-e\right)^2}{1+e}\sqrt{pp_{at}},\qquad K=\dfrac{2}{3}\dfrac{1+\nu}{1-2\nu}G.G=G0​1+e(2.97−e)2​ppat​​,K=32​1−2ν1+ν​G.

To improve numerical stability, GGG is bounded by GrG0∣pat∣G_rG_0|p_{at}|Gr​G0​∣pat​∣ where GrG_rGr​ is a constant can be chosen as for example 0.10.10.1. This is equivalent to define an elastic response for ∣p∣<0.01∣pat∣|p|<0.01|p_{at}|∣p∣<0.01∣pat​∣.

The void ratio can be associated to strain so that

e=e0+(1+e0)tr εtr.e=e_0+\left(1+e_0\right)\mathrm{tr~}{\varepsilon^{tr}}.e=e0​+(1+e0​)tr εtr.

The strain increment can be decomposed into elastic and plastic parts.

εtr=εn+Δε=εn+Δεe+Δεp.\mathbf{\varepsilon}^{tr}=\mathbf{\varepsilon}_n+\Delta\mathbf{\varepsilon}=\mathbf{\varepsilon}_ n+\Delta\mathbf{\varepsilon}^{e}+\Delta\mathbf{\varepsilon}^{p}.εtr=εn​+Δε=εn​+Δεe+Δεp.

As such, the stress increment can be expressed accordingly,

σ=σn+Δσ=σn+2G(Δe−Δep)+K(Δεv−Δεvp)I.\mathbf{\sigma}=\mathbf{\sigma}_n+\Delta\mathbf{\sigma}=\mathbf{\sigma}_n+2G\left( \Delta{}\mathbf{e}-\Delta{}\mathbf{e}^{p}\right)+K\left(\Delta\varepsilon_v-\Delta\varepsilon_v^p\right)\mathbf{I}.σ=σn​+Δσ=σn​+2G(Δe−Δep)+K(Δεv​−Δεvp​)I.

In deviatoric and spherical components,

σ=s+pI,p=pn+K(Δεv−Δεvp),s=sn+2G(Δe−Δep),\mathbf{\sigma}=\mathbf{s}+p\mathbf{I},\\ p=p_n+K\left(\Delta\varepsilon_v-\Delta\varepsilon_v^p\right),\\ \mathbf{s}=\mathbf{s}_n+2G\left(\Delta{}\mathbf{e}-\Delta{}\mathbf{e}^{p}\right),σ=s+pI,p=pn​+K(Δεv​−Δεvp​),s=sn​+2G(Δe−Δep),

with

Δε=Δe+13ΔεvI,\Delta\mathbf{\varepsilon}=\Delta{}\mathbf{e}+\dfrac{1}{3}\Delta\varepsilon_v\mathbf{I},Δε=Δe+31​Δεv​I,

where s=dev σ\mathbf{s}=\mathrm{dev~}{\mathbf{\sigma}}s=dev σ is the deviatoric stress, p=13tr σp=\dfrac{1}{3}\mathrm{tr~ }{\mathbf{\sigma}}p=31​tr σ is the hydrostatic stress.

Critical State

The critical state parameter is chosen as

ψ=e−e0+λc(ppat)ξ.\psi=e-e_0+\lambda_c\left(\dfrac{p}{p_{at}}\right)^\xi.ψ=e−e0​+λc​(pat​p​)ξ.

The dilatancy surface is defined as

αd=αcexp⁡(ndψ).\alpha^d=\alpha^c\exp\left(n^d\psi\right).αd=αcexp(ndψ).

The bounding surface is defined as

αb=αcexp⁡(−nbψ).\alpha^b=\alpha^c\exp\left(-n^b\psi\right).αb=αcexp(−nbψ).

Yield Function

A wedge-like function is chosen to be the yield surface.

F=∣s+pα∣+mp=∣η∣+mp,F=\big|\mathbf{s}+p\mathbf{\alpha}\big|+mp=\big|\mathbf{\eta}\big|+mp,F=​s+pα​+mp=​η​+mp,

where α\alphaα is the so called back stress ratio and mmm characterises the size of the wedge. For simplicity, mmm is assumed to be a constant in this model.

By denoting η=s+pα\mathbf{\eta}=\mathbf{s}+p\mathbf{\alpha}η=s+pα, the directional unit tensor is defined as

n=η∣η∣.\mathbf{n}=\dfrac{\mathbf{\eta}}{\big|\mathbf{\eta}\big|}.n=​η​η​.

Flow Rule

A non-associated plastic flow is used, the corresponding flow rule is defined as follows.

Δεp=γ(n+13DI),\Delta\mathbf{\varepsilon}^p=\gamma\left(\mathbf{n}+\dfrac{1}{3}D\mathbf{I}\right),Δεp=γ(n+31​DI),

where DDD is the dilatancy parameter.

D=Ad(αd−m−α:n)=A0(1+⟨z:n⟩)(αd−m−α:n).D=A_d\left(\alpha^d-m-\mathbf{\alpha}:\mathbf{n}\right)=A_0\left(1+\left\langle\mathbf{z}: \mathbf{n}\right\rangle\right)\left(\alpha_d-m-\mathbf{\alpha}:\mathbf{n}\right).D=Ad​(αd−m−α:n)=A0​(1+⟨z:n⟩)(αd​−m−α:n).

Due to the change of sign convention, a negative DDD gives contractive response, thus A0A_0A0​ often needs to be negative.

Hardening Rule

The evolution rate of the back stress ratio α\mathbf{\alpha}α is defined in terms of a proper distance measure from the bounding surface,

Δα=γh((αb−m)n−α),\Delta\mathbf{\alpha}=\gamma{}h\left(\left(\alpha^b-m\right)\mathbf{n}-\mathbf{\alpha}\right),Δα=γh((αb−m)n−α),

where hhh controls the hardening rate,

h=b0exp⁡(h1(αin−α):n).h=b_0\exp\left(h_1\left(\mathbf{\alpha}_{in}-\mathbf{\alpha}\right):\mathbf{n}\right).h=b0​exp(h1​(αin​−α):n).

The parameter b0b_0b0​ is defined as a function of current state,

b0=G0h0(1−che)patp.b_0=G_0h_0\left(1-c_he\right)\sqrt{\dfrac{p_{at}}{p}}.b0​=G0​h0​(1−ch​e)ppat​​​.

αin\mathbf{\alpha}_{in}αin​ is updated whenever load reversal occurs.

Fabric Effect

The fabric tensor changes when Δεvp\Delta\varepsilon^p_vΔεvp​ is positive,

Δz=cz⟨Δεvp⟩(zmn−z).\Delta\mathbf{z}=c_z\left\langle\Delta\varepsilon^p_v\right\rangle\left(z_m\mathbf{n}-\mathbf{z}\right).Δz=cz​⟨Δεvp​⟩(zm​n−z).
10.1061/(ASCE)0733-9399(2004)130:6(622)
Constitutive Modelling Cookbook