Viscosity02

Viscous Damper

This material model does not respond to strain/displacement. To represent materials that respond to both displacement and velocity, see Maxwell and Kelvin.

See also damper elements Damper01 and Damper02.

References

Theory

The quadrant damper is implemented.

The damping force is defined as a function of displacement and velocity (or strain and strain rate, depends on what the input is).

σ=sign(ε˙) η(ε,ε˙) ε˙α.\sigma=\text{sign}(\dot\varepsilon)~\eta(\varepsilon,\dot\varepsilon)~|\dot\varepsilon|^\alpha.

The damping coefficient is a function of strain and strain rate that can be expressed as follows, which shows different response in different quadrants.

η(ε,ε˙)=η1+η2+η3+η44+η1η2+η3η4π2arctan(g1ε)arctan(g2ε˙)+η1η2η3+η42πarctan(g1ε)+η1+η2η3η42πarctan(g2ε˙).\begin{align*} \eta\left(\varepsilon,\dot\varepsilon\right) &=\dfrac{\eta_1+\eta_2+\eta_3+\eta_4}{4}+\dfrac{\eta_1-\eta_2+\eta_3-\eta_4}{\pi^2}\arctan\left(g_1\varepsilon\right) \arctan\left(g_2\dot\varepsilon\right)\\[4mm]&+\dfrac{\eta_1-\eta_2-\eta_3+\eta_4}{2\pi}\arctan\left( g_1\varepsilon\right)+\dfrac{\eta_1+\eta_2-\eta_3-\eta_4}{2\pi}\arctan\left(g_2\dot\varepsilon\right). \end{align*}

Syntax

material Viscosity02 (1) (2) (3) [4] [5] [6] [7] [8]
# (1) int, unique tag
# (2) double, alpha
# (3) double, damping coefficient \eta_1
# [4] double, damping coefficient \eta_2, default: (3)
# [5] double, damping coefficient \eta_3, default: (3)
# [6] double, damping coefficient \eta_4, default: (3)
# [7] double, steepness factor g_1, default: 1E3
# [8] double, steepness factor g_2, default: 1E3

Last updated