TimberPD

Timber Plastic-Damage Model

References

Syntax

material TimberPD (1) (2...7) (8...10) (11...19) (20) (21) (22) (23) (24) (25) (26) [27]
# (1) int, unique material tag
# (2...7) double, six moduli: E_{xx}, E_{yy}, E_{zz}, E_{xy}, E_{yz}, E_{zx}
# (8...10) double, three poissions ratios: v_{xy}, v_{yz}, v_{zx}
# (11...19) double, nine yield stress
# (20) double, h
# (21) double, r_t^0
# (22) double, b_t
# (23) double, m_t
# (24) double, r_c^0
# (25) double, b_c
# (26) double, m_c
# [27] double, density, default: 0.0

Remarks

  1. The yield stress shall be arranged in the following order: σ11t\sigma_{11}^t, σ11c\sigma_{11}^c, σ22t\sigma_{22}^t, σ22c\sigma_{22}^c, σ33t\sigma_{33}^t, σ33c\sigma_{33}^c, σ120\sigma_{12}^0, σ230\sigma_{23}^0, σ130\sigma_{13}^0.

  2. The original paper documents a comprehensive procedure to determine hardening parameter hh.

Damage

The damage evolutions are identical to the original formulation but with different notations.

The final stress σ\sigma is calculated as

σ=(1ωt)σˉt+(1ωc)σˉc\sigma=\left(1-\omega_t\right)\bar{\sigma}_t+\left(1-\omega_c\right)\bar{\sigma}_c

Tension Damage Evolution

ωt=1rt0rt(1bt+btexp(mt(rt0rt)))\omega_t=1-\dfrac{r_t^0}{r_t}\left(1-b_t+b_t\exp\left(m_t\left(r_t^0-r_t\right)\right)\right)

Compression Damage Evolution

ωc=bc(1rc0rc)mc\omega_c=b_c\left(1-\dfrac{r_c^0}{r_c}\right)^{m_c}

View and edit parameters to see how they affect the damage evolution.

Last updated